Why do we have Purkinje fibers deep in our heart?
نویسندگان
چکیده
Purkinje fibers were the first discovered component of the cardiac conduction system. Originally described in sheep in 1839 as pale subendocardial cells, they were found to be present, although with different morphology, in all mammalian and avian hearts. Here we review differences in their appearance and extent in different species, summarize the current state of knowledge of their function, and provide an update on markers for these cells. Special emphasis is given to popular model species and human anatomy.
منابع مشابه
Actions and release characteristics of secretin in the rat cerebellum
Secretin, a peptide hormone of the gastrointestinal system, has been implicated in the etiology of autism. Our laboratory previously demonstrated the expression of secretin and its receptors in specific central neurons, and found for the first time that secretin is neuroactive in the cerebellum. We showed that bath application of secretin facilitated the release of GABA from terminals of basket...
متن کاملActions and release characteristics of secretin in the rat cerebellum
Secretin, a peptide hormone of the gastrointestinal system, has been implicated in the etiology of autism. Our laboratory previously demonstrated the expression of secretin and its receptors in specific central neurons, and found for the first time that secretin is neuroactive in the cerebellum. We showed that bath application of secretin facilitated the release of GABA from terminals of basket...
متن کاملWhy does the heart beat? The discovery of the electrical system of the heart.
Why does the heart beat? This question--known as the myogenic versus neurogenic theory--dominated cardiac research in the 19th century. In 1839, Jan Evangelista Purkinje discovered gelatinous fibers in the ventricular subendocardium that he thought were muscular. Walter Gaskell, in 1886, demonstrated specialized muscle fibers joining the atria and ventricles that caused "block" when cut and fou...
متن کاملWhy does the central nervous system not regenerate after injury?
A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...
متن کاملWhy does the central nervous system not regenerate after injury?
A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological research
دوره 63 Suppl 1 شماره
صفحات -
تاریخ انتشار 2014